

AFRL-OSR-VA-TR-2013-0208

CROSS-BOUNDARY SECURITY ANALYSIS

Thomas W. Reps
University of Wisconsin-Madison

April 2013
Final Report

DISTRIBUTION A: Approved for public release.

AIR FORCE RESEARCH LABORATORY
AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)

ARLINGTON, VIRGINIA 22203
AIR FORCE MATERIEL COMMAND

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

25-02-2013 FINAL REPORT 01-02-2009 to 30-11-2012

CROSS-BOUNDARY SECURITY ANALYSIS

FA9550-09-1-0279

Thomas W. Reps

University of Wisconsin-Madison
Research & Sponsored Programs
12 North Park Street, Suite 6401

AFOSR
875 N Randolph St
Arlington, VA 22203

AFRL-OSR-VA-TR-2013-0208

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

The goal of the project was to develop new methods to discover security vulnerabilities and security exploits. The research involved
static analysis, dynamic analysis, and symbolic execution of software at both the source-code and machine-code levels. An aspect
that distinguished the approach taken in the project from previous work was the attempt to uncover security problems due to
differences in outlook between different levels of a system -- an approach called cross-boundary security analysis. The term refers
both to (i) translation effects where the source-level outlook and the machine-code-level outlook differ, as well as (ii) differences in
outlook between a source-level view of a component's API and the machine code that implements the component, which can
sometimes allow a sequence of API calls to drive a program to a bad state. In both cases, one has two different artifacts that are
supposed to have the same semantics, but whose semantics actually differ.

U U U SAR

Thomas Reps

608-262-1204

Reset

Final Report for Grant FA9550-09-1-0279:

Cross-Boundary Security Analysis

(01 Feb. 2009 – 30 Nov. 2012)

Thomas Reps

Computer Sciences Department
University of Wisconsin

Abstract

The goal of the project was to develop new methods to discover security vulnera-
bilities and security exploits. The research involved static analysis, dynamic analysis,
and symbolic execution of software at both the source-code and machine-code levels.

An aspect that distinguished the approach taken in the project from previous
work was the attempt to uncover security problems due to differences in outlook be-
tween different levels of a system—an approach called cross-boundary security analy-

sis. The term refers both to (i) translation effects where the source-level outlook and
the machine-code-level outlook differ, as well as (ii) differences in outlook between a
source-level view of a component’s API and the machine code that implements the
component, which can sometimes allow a sequence of API calls to drive a program to
a bad state. In both cases, one has two different artifacts that are supposed to have
the same semantics, but whose semantics actually differ.

1 Objective and Technical Approach

Recent research in the fields of programming languages, software engineering, and program
verification has led to new kinds of tools for analyzing programs for bugs and security
vulnerabilities. In these tools, program analysis conservatively answers the question “Can
the program reach a bad state?” Many impressive results have been achieved; however, the
vast majority of existing tools analyze source code, whereas most programs are delivered as
machine code. If analysts wish to vet such programs for bugs and security vulnerabilities,
tools for analyzing machine code are needed.

The project “Cross-Boundary Security Analysis” focused on the analysis of machine code.
The objective of the project was both to find security vulnerabilities (i.e., flaws in software),
as well as inputs to the programs that capitalize on these flaws (exploits). The plan was also
to do this for multiple hardware platforms (i.e., for multiple instruction sets).

The original insight behind the research undertaken in the project was that there are of-
ten differences in outlook when one examines different levels of a system. “Different levels”
applies to several aspects of software: across module boundaries (e.g., a client application and
the libraries that is uses), as well as across the source-code/machine-code translation bound-
ary. However, the notion of “differences in outlook” was not well understood—and hence

1

Significance of Behavioral Differences

�

Execution
according to
source-code
semantics

Execution
according to
machine-code
semantics

Deviation point

Benign state

Figure 1: How to use a pair of models simultaneously to identify behavioral differences.

worthy of study. In each case, the plan was to analyze a pair of models simultaneously to
identify behavioral differences—i.e,. semantic anomalies. There were multiple techniques to
be applied, including static analysis, dynamic analysis, as well as a combination of symbolic
evaluation and constraint solving.

Fig. 1 presents an idealization of the technical approach taken in the project. The
first step is to find a deviation point—a place where the machine-code semantics and the
source-level semantics differ—e.g., the source-level semantics is undefined, or underspecified,
whereas the machine-code semantics follows that of the instruction-set semantics. Once
a deviation point has been found, the goal switches to following the consequences in the
machine-code to try to characterize the set of circumstances under which the flaw can be
exploited.

2 Project Accomplishments

Work carried out during the project falls into five categories: §2.1 describes work on so-called
“directed proof generation”. §2.2 discusses techniques that were developed for machine-code
analysis. §2.3 describes several approaches that were developed to make it easier, and more
automatic, to develop program-analysis tools. §2.4 describes work carried out on analyzing
concurrent programs. §2.5 discusses a few other results that were obtained during the course
of the project.

2.1 Research on Directed Proof Generation

Directed proof generation is a program-analysis method that was developed in 2008 at Mi-
crosoft Research India for analyzing source-code programs [2]. Although it was originally
developed for analyzing source code, directed proof generation has several characteristics
that made it an attractive starting point for the project, the most important of which is that
it performs a goal-directed search to see if a given target of interest can be reached.

The objective was to use directed proof generation on both source code and machine code
simultaneously. The first hurdle was to make it work for machine code. The challenge faced
was that the method for directed-proof-generation used in the Microsoft work uses many
techniques that are unsound—i.e., lead to incorrect answers—if they were to be applied to
machine code.

Consequently, the first two years of the project focused on the development of algorithms
for directed proof generation that are suitable for use on machine code. A prototype tool,

2

called MCVETO (forMachine CodeVErification TOol), was created, which incorporated the
techniques developed (Conference publication (9)). What distinguishes the work onMCVETO

is that MCVETO handles a large number of issues that have been ignored in previous work on
program analysis, and would cause previous techniques to be unsound if applied to machine
code.

Background on Directed Proof Generation. Given a program and a particular target
location, directed proof generation returns either (i) an input for which execution leads to
the target or (ii) a proof that the target is unreachable (or (iii) the algorithm does not
terminate). It performs a goal-directed search to see if the given target of interest can be
reached; if the target is unreachable, the outcome serves as a proof that the program is
correct.

During the search, it maintains two approximations of the program’s behavior, an under-
approximation and an over-approximation. In essence, it plays both of them off each other:
both are used at each stage to figure out which of them needs to be improved to create a
better approximation. A combination of analysis techniques are used during this process:
dynamic analysis (running tests), symbolic evaluation and constraint solving (to figure out
whether the program can be driven down new paths), and (in the Wisconsin work) static
analysis to make general improvements in the over-approximation.

The value of directed proof generation comes from the fact that it is capable of establish-
ing the absence of vulnerabilities, as well as the definite presence of vulnerabilities. The two
approximations are successively tightened until it is determined that either no input exists
that can reach the target state, or such an input is found. If an input is found, it represents
a definite vulnerability in the program. If the search terminates without finding such an
input, it establishes that there is no vulnerability (at the target point).

Directed Proof Generation for Machine Code. In general, machine-code analysis is
more difficult than source-code analysis, and directed proof generation is no exception. For
instance, at the machine-code level, the analysis task is complicated by the fact that arith-
metic and address-dereferencing operations are both pervasive and inextricably intermin-
gled. On the other hand, machine-code analysis also offers new opportunities, in particular,
the opportunity to track low-level, platform-specific details, such as memory-layout effects.
Programmers are typically unaware of such details; however, they are often the source of
exploitable security vulnerabilities.

Reps’s group developed several innovations in methods for directed proof generation so
that it could be applied to machine code. In particular, they developed a way to perform
directed proof generation while avoiding a host of assumptions that are unsound in general,
and that would be particularly inappropriate in the machine-code context, such as reliance
on symbol-table, debugging, or type information, and preprocessing steps for (a) building a
pre-computed, fixed, control-flow graph or (b) performing points-to/alias analysis. Instead,
their method builds its abstraction of the program’s state space on-the-fly. The initial over-
approximation of the program has only two abstract states (“non-target” and “target”), and
is gradually refined as more of the program is exercised.

The method does not require static knowledge of the split between code vs. data: it and
uses a sound approach to disassembly. It performs disassembly during state-space explo-
ration, but never on more than one instruction at a time. (That is, it does not have to be

3

prepared to disassemble collections of nested branches, loops, procedures, or the whole pro-
gram all in one go, which is what leads conventional disassembly tools astray.) The method
can even analyze programs with that use self-modifying code.

The method can also handle “instruction aliasing”: programs written in instruction sets
with varying-length instructions, such as x86, can have “hidden” instructions starting at
positions that are out of registration with the instruction boundaries of a given reading of an
instruction stream. The ability to deal with instruction aliasing can be important because
it is sometimes used in exploiting security vulnerabilities.

Finally, they also developed a way to create such a tool for directed proof generation
for machine code automatically, starting from a description of the instruction set to be sup-
ported. The net result is that a new version of MCVETO for a different instruction set can be
created easily: just write the specification of the instruction set’s semantics; push a button;
and receive your tool. (Given a specification, tool generation requires approximately 1 minute
to generate some language-specific code, and approximately 1 hour to compile the resulting
code.) Specifications of both the x86 and PowerPC instruction sets were implemented,
and thus two versions of MCVETO were created: MCVETO/x86 and MCVETO/PowerPC.
(MCVETO/x86 was the primary development testbed; MCVETO/PowerPC was more of a
proof-of-concept.)

Innovations in Directed Proof Generation for both Source Code and Machine

Code. Some of the other innovations in directed proof generation that Reps’s group de-
veloped during the project apply to both source code and machine code. One provides a
way to avoid getting stuck in a trap in which directed proof generation keeps finding related
spurious counter-examples (for the case i = 1, then the case i = 2, then . . .), which are then
successively eliminated from the (approximate) representations of the program’s state space
that are maintained during directed proof generation. The technique that was worked out
generalizes from one spurious counter-example so that a whole collection of related spurious
counter-examples can be eliminated.

Another innovation involved the development of new symbolic techniques for the search
that the verification tool carries out. The advantage of symbolic techniques is to be able to
carry out operations “en masse”, so that the verifier performs its work more efficiently.

Reps and his students also collaborated with Dr. Ken McMillan (Microsoft) to investigate
how to extend MCVETO to use the interpolant generator Foci to improve the search procedure
used by MCVETO. Unfortunately, Foci was not capable of handling the kinds of formulas
that arise in directed test generation of machine code.

Supporting Directed Proof Generation for Source-Code Languages. A major goal
was to support directed proof generation for source-code languages, in particular LLVM.
Unfortunately, this work was only partially completed. LLVM compiles source code into an
intermediate language with a far simpler semantics than most source languages, but still has
some points where behavior is still undefined until compiled into lower-level code.

A semantic specification of LLVM “bit-code” was written in the TSL specification lan-
guage. (Bit-code is one of the intermediate languages of LLVM; see §2.3 for a discussion of
TSL and its capabilities.) The TSL compiler was used to generate an interpreter for LLVM
from the semantic specification, which took care of the concrete-execution component needed
for directed proof generation. Actually, the concrete interpreter was for a subset of LLVM

4

bit-code, and thus could run a subset of programs compiled to LLVM. (The issue was that
LLVM uses data types that are not available in TSL, such as floating-point numbers.)

The intention was to use TSL to generate additional analysis components from the same
TSL specification of LLVM—in particular, a symbolic-execution primitive to perform for-
ward symbolic execution of LLVM bit-code programs. TSL had previously been used to
develop symbolic-execution primitives for machine code (x86 and PowerPC), and the task
that remained was to do the same for source code.

Unfortunately, to create such abstract interpreters for LLVM, they needed to extend
TSL. Recursive data types in TSL are defined using discriminated unions; each discriminated-
union type can consist of values constructed via multiple user-defined “operators”. However,
the current version of TSL only allows for abstract interpretation of discriminated unions
that have a single operator. Because the semantic specification for LLVM has many recursive
data types that involve discriminated unions over multiple operators, what remains to be
done is to extend the TSL compiler to support enhanced methods for abstracting trees.
They have mostly implemented such an extension, but it has not been tested thoroughly.
An additional unfinished task is to create and implement useful abstractions of recursive
data types, particularly ones that abstract the LLVM run-time stack.

2.2 Machine-Code Analysis

Several other projects that focused on machine-code analysis were also carried out:
• Technical report (3) describes a tool, called BCE (for “Botnet Command Extractor”),
for automatically extracting botnet-command information from bot executables. The
goal of the work on BCE was to address a major problem faced by malware vendors—
namely, to analyze the behavior of bots, it is desirable to run the bot executables and
observe their actions. However, to be able to execute bots, one needs proper input
commands that trigger malicious behaviors. It is a difficult and time-consuming task
to manually infer botnet commands from binaries.
BCE uses a search strategy that improves on ones used in tools for directed test

generation. Our experiments showed that the new search strategy developed for BCE
yielded both substantially higher coverage of the parts of the program relevant to
identifying bot commands, as well as lowered run-time.

• Conference publication (6) describes a tool, called PCCA (for “Producer-Consumer
Conformance Analyzer”), that addresses the problem of identifying incompatibilities
between two programs that operate in a producer/consumer relationship. PCCA at-
tempts to (i) determine whether the consumer is prepared to accept all messages that
the producer can emit, or (ii) find a counterexample: a message that the producer can
emit and the consumer considers ill-formed. (PCCA was mainly supported under an
ONR contract.)

A paper was also written to accompany an invited tutorial about machine-code analysis
that was presented at the 2010 Int. Conf. on Computer-Aided Verification (CAV) (Invited
paper (2)). Magazine article (1) also concerns machine-code analysis; it appeared in a forum
whose readership is mainly practitioners.

5

2.3 Techniques to Make Program Analysis More Automatic

A substantial amount of work was carried out to develop techniques that make it easier to
build program-analysis tools. With the techniques developed, it is possible to create tools
more rapidly, with greater assurance that they are correct (because they are correct by
construction), and that give more precise analysis results.

• Journal publication (1) is a lengthy journal paper that describes the TSL system.
(TSL stands for “Transformer Specification Language”). TSL provides a systematic
solution to the problem of creating retargetable tools for analyzing machine code. TSL
is a tool generator—i.e., a meta-tool—that automatically creates different abstract
interpreters for machine-code instruction sets. TSL provides help in automating the
generation of the set of abstract transformers for a given abstract interpretation of
a given instruction set. From a description of the concrete operational semantics of
an instruction set, together with the datatypes and operations that define an abstract
domain, TSL automatically creates the set of abstract transformers for the instructions
of the instruction set. TSL advances the state of the art in program analysis because
it provides two dimensions of parameterizability: (i) a given analysis component can
be retargeted to different instruction sets; (ii) multiple analysis components can be
created automatically from a single specification of the concrete operational semantics
of the language to be analyzed.

• Journal publication (5) presents a novel technique developed in Reps’s group to cre-
ate implementations of the basic primitives used in symbolic program analysis: for-
ward symbolic evaluation, weakest liberal precondition, and symbolic composition. The
methods described in the paper have been implemented using TSL, which allowed
correct-by-construction implementations of all three symbolic-analysis primitives to be
obtained for both the x86 and PowerPC instruction sets.

• Nested-word automata [1] (NWAs) are a language formalism that helps bridge the
gap between finite-state automata and pushdown automata. NWAs can express some
context-free properties, such as parenthesis matching, yet retain all the desirable closure
characteristics of finite-state automata.
Conference publication (4) and Technical report (2) describe OpenNWA, a C++

library for working with NWAs, developed in Reps’s group. The library provides
the expected automata-theoretic operations, such as intersection, determinization, and
complementation. It is packaged with WALi [5]—the Weighted Automaton Library
(which also came out of Reps’s group)—and inter-operates closely with the weighted-
pushdown-system portions of WALi.

• Journal publication (6) introduced view-augmented abstractions, which specialize an
underlying numeric domain to focus on a particular expression or set of expressions.
A view-augmented abstraction adds a set of materialized views to the original domain.
View augmentation can extend a domain so that it captures information unavailable
in the original domain. The paper shows how to use finite differencing to maintain a
materialized view in response to a transformation of the program state. Experiments
showed that view augmentation can increase precision in useful ways.

• Pending submission (2) advances the state of the art in abstract interpretation of
machine code. The method described in the paper tackles two of the biggest challenges

6

in machine-code analysis: (1) holding onto invariants about values in memory, and (2)
identifying affine-inequality invariants while handling overflow in arithmetic operations
over bit-vector data-types.

Symbolic Abstraction. Reps’s group developed what they call “symbolic abstraction”.
This work has led to a collection of techniques that, in some cases, can attain the limit of
precision that can be achieved using any algorithm that works with a given dataflow domain.

Symbolic abstraction (Conference publication (1), (2), (3), and (5), and Pending submis-
sion (1)) bridge the gap between (i) the use of logic for specifying program semantics and
performing program analysis, and (ii) abstract interpretation. The connection hinges on the
following question: given a formula ϕ in some logic L, how can one find the best value A

in a given abstract domain A that over-approximates the meaning of ϕ (i.e., [[ϕ]] ⊆ γ(A))?
An algorithm that, given ϕ, returns A is called a symbolic-abstraction algorithm (denoted
by A = α̂(ϕ)).

If you think of logic L as being a rich language for expressing meanings, and abstract
domain A as corresponding to a logic fragment L′ that is less expressive than L, then
symbolic abstraction addresses a fundamental approximation problem: given ϕ ∈ L, find
the strongest consequence of ϕ that is expressible in logic fragment L′. Recent work has
shown that it is possible to give algorithms for finding strongest consequences for families of
abstract domains that obey certain properties.

Symbolic abstraction is “dual use”: in addition to providing improved techniques for pro-
gram analysis, it also provides better methods for building decision procedures for computer-
aided reasoning. There are really two aspects to this:

1. Recently, two SAT algorithms, called Conflict-Directed Clause Learning (CDCL) and
St̊almarck’s method, have been “reverse engineered” from the abstract-interpretation
perspective ([3] and Conference publication (2)); this work shows that abstract inter-
pretation has actually been used inside SAT algorithms without the designers of those
algorithms being aware of that fact (or even of the concept of abstract interpretation).
More precisely, what has been shown is that particular data types in the CDCL and
St̊almarck algorithms are really instances of an abstract domain—in the sense of meet-
ing a certain interface. The power of this observation is that one can then plug in
new abstract domains in the same basic algorithm to obtain more powerful decision
procedures ([4] and Conference publication (3)).

2. An algorithm for symbolic abstraction can be used for unsatisfiability checking (UN-
SAT): if α̂(ϕ) = ⊥ then ϕ is unsatisfiable. Similarly, an algorithm for symbolic ab-
straction can be used for validity checking: if α̂(¬ϕ) = ⊥ then ϕ is valid.

2.4 Analysis of Concurrent Programs

Reps’s group at Wisconsin did two pieces of collaborative work with Reps’s colleague Prof.
Shan Lu on analyzing concurrent programs. In both projects, a mixture of dynamic and
static analysis was employed.

• Journal publication (2) focuses on concurrency bugs that result in program crashes,
specifically buggy interleavings that directly cause memory bugs (NULL-pointer-
dereferences, dangling-pointers, buffer-overflows, uninitialized-reads) on shared mem-
ory objects. (A study of the error-propagation process of real-world concurrency bugs
showed that a common pattern accounted for 50% of non-deadlock concurrency bugs.)

7

The tool that was built, called ConMem, monitors program execution, analyzes mem-
ory accesses and synchronizations, and predictively detects these concurrency-memory
bugs. ConMem was evaluated using seven open-source programs with ten real-world
concurrency bugs. ConMem detected more tested bugs (9 out of 10 bugs) than a lock-
set-based race detector and an unserializable interleaving detector, which detected 4
and 6 bugs, respectively. ConMem’s false-positive rate was about one tenth of the
other tools. ConMem has reasonable overhead suitable for use during development
and testing.

• Conference publication (7) explored a consequence-oriented approach to improving
the accuracy and coverage of state-space search and bug detection. The approach
taken was to first statically identify potential failure sites in a program binary, and
then use (backward) static slicing to identify critical read instructions that are highly
likely to affect potential failure sites through control and data dependences. Finally, a
single (correct) execution of a concurrent program is monitored to identify suspicious
interleavings that could cause an incorrect state to arise at a critical read and then
lead to a software failure.
The tool that was built, called ConSeq, showed that the above approach produced

several improvements in bug-detection coverage and accuracy. An evaluation on large,
real-world C/C++ applications showed that ConSeq detects more bugs than traditional
approaches and has a much lower false-positive rate.

Reps’s group also completed several projects on model checking of concurrent programs:
• Journal publication (3) concerned automatically verifying safety properties of concur-
rent programs. In that work, the safety property of interest is to check for multi-
location data races in concurrent Java programs, where a multi-location data race
arises when a program is supposed to maintain an invariant over multiple data loca-
tions, but accesses/updates are not protected correctly by locks.
A notable aspect of that work was to establish a new analysis principle, called random

isolation, in which the analyzer uses a semantics that randomly choses a runtime
object to be marked indelibly as a special object. The analyzer uses the “mark” to
track that object separately from other objects (which are generally lumped together
in a “summary object”). Because the marked object is chosen randomly, a proof
that a safety property holds for it generalizes to all of the objects modeled by the
accompanying summary object.

• Journal publication (4) presented a new decision procedure for verifying that a class
of data races caused by inconsistent accesses on multiple fields of an object cannot
occur (so-called atomic-set serializability). Atomic-set serializability generalizes the
ordinary notion of a data race (i.e., inconsistent coordination of accesses on a single
memory location) to a broader class of races that involve accesses on multiple memory
locations.

• Journal publication (7) addressed the analysis of concurrent programs with shared
memory. Such an analysis is undecidable in the presence of multiple procedures. One
approach used in recent work obtains decidability by providing only a partial guarantee
of correctness: the approach bounds the number of context switches allowed in the
concurrent program, and aims to prove safety, or find bugs, under the given bound.
That principle was improved in the work from Reps’s group by means of a general

8

method to convert a concurrent program P , and a given context bound K, into a
sequential program PK

s
such that the analysis of PK

s
can be used to prove properties

about P .
The advantage of this approach is that it permits any sequential analyzer to be

harnessed to analyze concurrent programs as well, under a context bound.
• Technical report (1) describes work that extended Journal publication (7) to permit
an analyzer to exploit induction when analyzing a concurrent program.

2.5 Miscellaneous

Several other pieces of work related to program analysis and transformation were carried out
with partial funding from AFOSR grant FA9550-09-1-0279.

Invited paper (1) describes DESKCHECK, a static analyzer that is able to establish
properties of programs that manipulate dynamically allocated memory, arrays, and integers.
DESKCHECK can verify quantified invariants over mixed abstract domains, e.g., heap and
numeric domains.

Conference publication (8) addressed an obstacle to the use of recently developed decen-
tralized information flow control (DIFC) operating systems. A DIFC operation system pro-
vides mechanisms for enforcing information-flow policies on the data used in a program. One
obstacle to adoption of such systems is that, heretofore, DIFC operating systems provided
only low-level mechanisms for application programmers to enforce desired policies—that is,
the policy is created by sprinkling calls to operations in the enforcement API throughout
an application. Because there is no first-class notion of a “policy” (separate from the code),
it is difficult to even know what security policy is being enforced. The work described in
Conference publication (8) introduced the idea of policy weaving : a policy is stated in a doc-
ument separate from the program (and expressed in a suitable policy-specification language);
a policy-weaver tool rewrites the program so that the specified policy will be enforced. (This
piece of work served as the proof-of-concept and jumping-off point for a larger project at
Wisconsin on policy weaving, conducted by Prof. Reps and his colleague Prof. Somesh Jha,
which is funded under DARPA’s CRASH program.)

Pending submission (3) defines a new variant of program slicing, called specialization slic-
ing, and presents an algorithm for the specialization-slicing problem that creates an optimal
output slice. An algorithm for specialization slicing is “polyvariant”: for a given procedure
p, the algorithm may create multiple specialized copies of p. In creating specialized proce-
dures, the algorithm must decide for which patterns of formal parameters a given procedure
should be specialized, and which program elements should be included in each specialized
procedure.

3 Technology Transition

Prof. Reps is the co-founder, along with Prof. Emeritus Tim Teitelbaum of Cornell, of a
company called GrammaTech, Inc. GrammaTech, which now has about 53 employees, is a
leader in the creation of tools for software analysis and manipulation, with expertise in static
and dynamic analysis; source code and machine code; and reverse engineering, information
assurance, and information protection. GrammaTech has many defense contractors as cus-
tomers, as well as research partnerships with others (e.g., Raytheon and Lockheed-Martin).
In addition, GrammaTech has had multiple projects with NSA and several FFRDCs (San-

9

dia, SAIC, MIT Lincoln Labs, and IDA-CCS), as well as NRL. Thus, through GrammaTech,
Reps has a pipeline for basic-research results obtained by his Wisconsin research group to
be transitioned into the hands of working analysts in a relatively short time.

Over the past two decades, Reps has transferred through GrammaTech several pieces of
technology to industrial use (including use by defense contractors), including (i) technology
for analyzing compliance with coding standards, (ii) the CodeSurfer code-understanding
tool (for C, C++, and x86), and (iii) the CodeSonar bug-finding tool for C and C++.
Most recently, a major defense contractor licensed the x86 version of CodeSonar for use in
supply-chain risk management. CodeSonar/x86 makes extensive use of the TSL tool that
was developed by Reps’s group.

Another example of technology transfer from Reps’s group to the DoD via GrammaT-
ech was highlighted in the 2007 report of the Defense Science Board Task Force on “Mis-
sion Impact of Foreign Influence on DoD Software” [6]. That report discussed the impor-
tance of “binary analysis” (analysis of machine code), and pointed both to GrammaTech’s
CodeSurfer/x86 tool, as well as to three specific analyses used in CodeSurfer/x86—affine-
relation analysis (ARA), value-set analysis (VSA), and aggregate structure identification
(ASI) [6, p. 63]. During 2001–2007, Reps and his then-student Gogul Balakrishnan devel-
oped ARA, VSA, and ASI for use on machine code, and collaborated with GrammaTech
to build the CodeSurfer/x86 system. (From 2001–06, the work was mainly supported at
Wisconsin under an OSD/ONR-sponsored MURI grant to Wisconsin under the Critical In-
frastructure Protection—Software (CIP-SW) program. On the GrammaTech side, support
came from an Air Force Rome Labs SBIR, as well as a variety of other sources.)

The results of the “Cross-Boundary Security Analysis” project on better techniques for
analyzing machine code are being transferred through GrammaTech to customers of interest
to the DoD in a similar fashion. In particular, GrammaTech is a heavy user of both TSL
(Journal publication (1)) and WALi [5]. Thus, as planned, GrammaTech is serving as a
pipeline to carry out the technology transfer needed to get such results into the hands of the
DoD, and DoD contractors, in a relatively short time.

4 Archival Publications

All of the papers below, except two of the journal papers in press, are available from Prof.
Reps’s web site: http://pages.cs.wisc.edu/∼reps/. (The journal papers will be posted when
they have appeared in print.)

4.1 Journal Publications

1. Lim, J. and Reps. T., TSL: A system for generating abstract interpreters and its
application to machine-code analysis. To appear in ACM Trans. on Program. Lang.
and Syst.

2. Zhang, W., Sun, C., Lim, J., Lu, S., and Reps, T., ConMem: Detecting crash-triggering
concurrency bugs through an effect-oriented approach. To appear in ACM Transactions
on Software Engineering and Methodology 22, 2 (2013).

3. Kidd, N., Reps, T., Dolby, J., and Vaziri, M., Finding concurrency-related bugs using
random isolation. In Int. Journal on Software Tools for Technology Transfer 13, 6
(2011), 495–518.

4. Kidd, N., Lammich, P., Touilli, T., and Reps, T., A decision procedure for detect-

10

ing atomicity violations for communicating processes with locks. In Int. Journal on
Software Tools for Technology Transfer 13, 1 (2011), 37–60.

5. Lim, J., Lal, A., and Reps, T., Symbolic analysis via semantic reinterpretation. In Int.
Journal on Software Tools for Technology Transfer 13, 1 (2011), 61–87.

6. Elder, M., Gopan, D., and Reps, T., View-augmented abstractions. In Electr. Notes
Theor. Comput. Sci. 267(1): 43–57 (2010).

7. Lal, A. and Reps, T., Reducing concurrent analysis under a context bound to sequential
analysis. In Formal Methods in System Design 35, 1 (2009).

4.2 Invited Papers

1. McCloskey, B., Reps, T., and Sagiv, M.: Statically inferring complex heap, array, and
numeric invariants. In Proc. Static Analysis Symposium (SAS), 2010.

2. Reps, T., Lim, J., Thakur, A.V., Balakrishnan, G., and Lal, A., There’s plenty of
room at the bottom: Analyzing and verifying machine code. In Proc. Computer-
Aided Verification (CAV), 2010.

4.3 Conference Publications

1. Thakur, A., Elder, M., and Reps, T., Bilateral algorithms for symbolic abstraction. In
Proc. Static Analysis Symposium (SAS), 2012.

2. Thakur, A. and Reps, T., A generalization of Staalmarck’s method. In Proc. Static
Analysis Symposium (SAS), 2012.

3. Thakur, A. and Reps, T., A method for symbolic computation of abstract operations.
In Proc. Computer-Aided Verification (CAV), 2012.

4. Driscoll, E., Thakur, A., and Reps, T., OpenNWA: A nested-word-automaton library
(tool paper). In Proc. Computer-Aided Verification (CAV), 2012.

5. Elder, M., Lim, J., Sharma, T., Andersen, T., and Reps, T., Abstract domains of affine
relations. In Proc. Static Analysis Symposium (SAS), 2011.

6. Driscoll, E., Burton, A., and Reps, T., Checking compatibility of a producer and a
consumer. In Proc. Found. of Software Engineering (FSE), 2011.

7. Zhang, W., Lim, J., Olichandran, R., Scherpelz, J., Jin, G., Lu, S., and Reps, T.,
ConSeq: Detecting concurrency bugs through sequential errors. In Proc. Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2011.

8. Harris, W., Jha, S., and Reps, T., DIFC programs by automatic instrumentation. In
Proc. ACM Conf. on Computer and Communications Security (CCS), 2010.

9. Thakur, A.V., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T.,
and Reps, T.: Directed proof generation for machine code. In Proc. Computer-Aided
Verification (CAV), 2010.

4.4 Magazine Articles

1. Anderson, P. and Reps, T., WYSINWYX: What You See Is Not What You eXecute.
In Embedded Systems Design, Feb. 2010.

4.5 Technical Reports

1. Prabhu, P., Reps, T., Lal, A., and Kidd, N. Verifying concurrent programs via bounded
context-switching and induction. TR-1701, Computer Sciences Department, University
of Wisconsin, Madison, WI, November 2011.

11

2. Driscoll, E., Thakur, A., Burton, A., and Reps, T., WALi: Nested-word automata.
TR-1675r, Computer Sciences Department, University of Wisconsin, Madison, WI,
July 2010; revised Sept. 2011.

3. Lim, J. and Reps, T., BCE: Extracting botnet commands from bot executables. TR-
1668, Computer Sciences Department, University of Wisconsin, Madison, WI, February
2010.

4.6 Pending Submissions

1. Thakur, A., Lal, A., Lim, J., and Reps, T., PostHat and all that: Attaining most-
precise inductive invariants. Submitted for conference publication, Jan. 2013.

2. Sharma, T., Thakur, A., and Reps, T., An abstract domain for bit-vector inequalities.
Submitted for conference publication, Jan. 2013.

3. Aung, M., Horwitz, S., Joiner, R., and Reps, T., Specialization slicing. TR-1776,
Computer Sciences Department, University of Wisconsin, Madison, WI, October 2012.
Submitted for journal publication.

5 Awards and Honors

1. 2011 ACM SIGSOFT Retrospective Impact Paper Award (for Reps, T., Horwitz, S.,
Sagiv, M., and Rosay, G., “Speeding up slicing” , 1994).

2. 2010 ACM SIGSOFT Retrospective Impact Paper Award (for Reps, T. and Teitel-
baum, T., “The Synthesizer Generator” , 1984).

3. Kidd, N., Lammich, P., Touili, T., and Reps, T., A decision procedure for detecting
atomicity violations for communicating processes with locks (SPIN Workshop, 2009)
was invited for special submission to the Int. Journal on Software Tools for Technology
Transfer.

4. Lim, J., Lal, A., and Reps, T., Symbolic analysis via semantic reinterpretation (SPIN
Workshop, 2009) was invited for special submission to the Int. Journal on Software
Tools for Technology Transfer.

5. Elder, M., Lim, J., Sharma, T., Andersen, T., and Reps, T., Abstract domains of affine
relations (Static Analysis Symposium (SAS), 2011) was invited for special submission
to ACM Trans. on Programming Languages and Systems.

6. As of February 2013, Thomas Reps was ranked 8th (citations) and 4th (field rat-
ing) on Microsoft Academic Search’s list of most-highly-cited authors in the field of
Programming Languages, and 23rd (citations) and 13th (field rating) on its list of
most-highly-cited authors in the field of Software Engineering.

References

[1] R. Alur and P. Madhusudan. Adding nesting structure to words. In Developments in Lang.

Theory, 2006.
[2] N.E. Beckman, A.V. Nori, S.K. Rajamani, and R.J. Simmons. Proofs from tests. In Int. Symp.

on Softw. Testing and Analysis, 2008.
[3] V. D’Silva, L. Haller, and D. Kroening. Satisfiability solvers are static analysers. In Static

Analysis Symp., 2012.
[4] V. D’Silva, L. Haller, D. Kroening, and M. Tautschnig. Numeric bounds analysis with conflict-

driven learning. In Tools and Algs. for the Construct. and Anal. of Syst., 2012.

12

[5] N. Kidd, A. Lal, and T. Reps. WALi: The Weighted Automaton Library, 2007.
www.cs.wisc.edu/wpis/wpds/download.php.

[6] Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Report
of the Defense Science Board Task Force on ‘Mission Impact of Foreign Influence on DoD
Software’, September 2007. www.acq.osd.mil/dsb/reports/ADA486949.pdf.

13

	Title Page_Dist A-09-1-0279
	AFRL-OSR-VA-TR-2013-0208

	sf 298-09-1-0279
	FA9550-09-1-0279_Final_Report[1]

